
The Embedded C Extension to C
Marcel Beemster, Hans van Someren, Willem Wakker

ACE Associated Compiler Experts bv.1
{marcel,hvs,willem}@ace.nl

Class #463

Abstract
Embedded C is a language extension to C that is the subject of a technical report by the ISO

working group on C named “Extensions for the programming language C to support embedded
processors” [3]. It aims to provide portability and access to common performance increasing
features of processors used in the domain of DSP and embedded processing.

Embedded C adds fixed-point data types, named address spaces and hardware I/O to C.
Fixed-point primitives give the programmer direct access to a processor's fixed-point
functionality. Named address spaces can be used to give control over multiple memory banks,
which are typically present in DSP processors to increase the effective bandwidth to the ALU.
The hardware I/O specification provides a standardized abstraction layer for accessing I/O
hardware registers.

Fixed-point primitives and named address spaces are performance increasing features. They
are motivated by a practical and economic need to program DSP processors in a high level
language instead of assembly. The hardware I/O specification improves portability, allowing the
same (driver) source code to run on multiple platforms.

Embedded C it is not part of the C language as such. The aim of the ISO report is to provide
common ground for initiatives that currently exist within the industry to flourish. The report has
been approved in 2004.

1. Motivation
High level language programming has been in use for a long time for embedded

system development. However, assembly programming still prevails, particularly for
DSP based systems. DSP processors are often programmed in assembly language by
assembly programmers that know the processor architecture inside out. The key
motivation for this practice is performance, despite the many disadvantages assembly
programming has over high level language programming.

Performance is key to signal processing application because it directly translates into
end-user features. A 10% lower clock speed may, for example, result in a 20% longer
battery life. If the video decoding takes 80% of the CPU-cycle budget instead of 90%,
there are twice as many cycles available for audio processing. This coupling of
performance to end-user features is characteristic of many of the real-time applications in
which DSP processors are applied.

The fixed-point and named address space extensions of Embedded C provide the
programmer with direct access of these features in the target processor, thus significantly
improving the performance of applications. The hardware I/O extension is a portability

1 Van Eeghenstraat 100, 1071 GL Amsterdam, The Netherlands, Phone (+31)206646416, http://www.ace.nl.

The Embedded C Extension to C

2 Embedded Systems Conference 2004 Class #206

feature of Embedded C. Its goal is to allow easy porting of device driver code between
systems.

The focus of this paper is on the performance improving features of Embedded C.

1.1. Typical DSP Architectures
A look into the typical architecture of DSP processors is required to understand the

need for an extension to C. DSP processors have a highly specialized architecture to
achieve the performance requirements for signal processing applications within the limits
of cost and power consumption set for consumer applications.

Unlike a conventional Load-Store (RISC) architecture, DSP processors have a data
path with memory access units that directly feed into the arithmetic units. Address
registers are taken out of the general purpose register file and placed next to the memory
units in a separate register file.

A further specialization of the data path is the coupling of multiplication and addition
to form a single cycle Multiply-ACcumulate unit (MAC). It is combined with special
purpose accumulator registers, which are separate from the general purpose registers.

Data memory is segmented and placed close to the MAC in order to achieve the high
bandwidths that are required to keep up with the streamlined data path. Limits are often
placed on the extend of memory addressing operations.

The localization of resources in the data path saves many data movements that
typically take place in a Load-Store architecture.

The most important common arithmetic extension to DSP architectures is the
handling of saturated fixed-point operations by the arithmetic unit. Fixed-point arithmetic
can be implemented with little additional cost over integer arithmetic. Automatic
saturation (or clipping) significantly reduces the number of control flow instructions
needed for checking overflow explicitly in the program.

Figure 1: Example DSP processor architecture with dual input
memory data path and MAC unit.

Figure 1 shows a picture of a typical DSP architecture. It shows the extended data
path giving direct access to X and Y memory using X and Y addressing units (X/YAU).
The addressing units have their own address registers (X/YAR) to implement address

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 3

post increment operations without having to access the general purpose registers (GPR).
The addressing units are further specialized to implement circular buffer access, which is
useful for implementing sliding windows over signal data.

1.2. Changing Requirements and the Role of the Compiler
DSP architectures are not easy to program optimally, either by hand or with a

compiler. Manual assembly programming is awkward because of the non-orthogonality
of the architecture and arbitrary restrictions that can be in place. Modern compilers can
deal with non-orthogonality reasonably well, but are not good at exploiting the special
features that DSP processors have in place.

The current state of the art embedded applications, mobile phones for example, are
implemented using two processors. One processor is a low-power RISC processor that
takes care of all control processing, user interaction and display management. It is
programmed in a high level language making use of a software development kit that
includes a compiler. The other processor is a DSP, which takes care of all of the signal
processing. The signal processing algorithms are typically hand coded in assembly.

Changes in technological and economic requirements make it more and more
expensive to continue programming the DSP processor in assembly. Staying with the
mobile phone as an example, the signal processing algorithms required become
increasingly complex. Features such as stronger error correction and encryption must be
added. Communication protocols become more sophisticated and require much more
code to implement. In certain market areas, multiple protocol stacks are implemented to
be compatible with multiple service providers. In addition, backward compatibility with
older protocols is needed to stay synchronized with provider networks that are in a slow
process of upgrading.

On the economic side, time to market for new technology puts increasing pressure on
design time. In 2004, the number of mobile phones that is expected to be sold world-wide
is in the order of 500 million [2]. In the western world, the time to replacement for
mobile phones is between 1 and 2 years, and is driven by new features and fashion. To
stay ahead in this market requires extremely fast and streamlined design projects.
Assembly programming has no place in this world. Assembly programming is error
prone and slow. Assembly programs are difficult to maintain and make a company
dependent on a few specialists. By definition, assembly programs are non-portable.
Legacy code makes it extremely expensive to switch to a new technology. These
dependencies make a company vulnerable to changes of its employees and its supplier
chain.

1.3. The Programming Mismatch
Today, most embedded processors are offered with a C compiler. Despite this,

programming DSP processors is still done in assembly for the signal processing parts or,
at best, by using assembly written libraries supplied by the manufacturer. The key reason
for this is that although the architecture is well matched to the requirements of the signal
processing application, there is no way to express the algorithms efficiently and in a
natural way in standard C. Saturated arithmetic, for example, is required in many
algorithms and supplied as a primitive in many DSP processors. However, there is no
such primitive in standard C. To express saturated arithmetic in C requires comparisons,

The Embedded C Extension to C

4 Embedded Systems Conference 2004 Class #206

conditional statements and correcting assignments. Instead of using a primitive, the
operation is spread over a number of statements that are difficult to recognize as a single
primitive by a compiler.

1.4. Enter Embedded C
Embedded C is designed to bridge the performance mismatch between the signal

processing algorithms, standard C and the architecture. It extends the C language with the
primitives that are needed by signal processing applications and that are commonly
provided by DSP processors. The design of Embedded C is based on DSP-C. DSP-C [1]
is an industry designed extension of C with which experience was gained since 1998 by
various DSP processor manufacturers in their compilers. For the development of DSP-C,
by ACE, cooperation was sought with embedded application designers and DSP
processor manufacturers. The Embedded C extension, like DSP-C, is designed in the
spirit of the C language, applying the same rules to the Embedded C primitives that also
hold for other primitives in C.

Embedded C makes life easier for the application programmer. The primitives
provided by Embedded C are the primitives that fit the conceptual model of the
application. The Embedded C extension to C unlocks the high performance features of
DSP processors for C programmers. Assembly programming is no longer required for a
vast body of performance critical code. Maintainability and portability of code are the
key winners in this process.

2. Embedded C Features
The features introduced by Embedded C are fixed-point and saturated arithmetic,

segmented memory spaces and hardware I/O addressing. The description that follows
describe these features from the language design perspective, as opposed to the
programmer's or processor architecture perspective. For the details and language
definition of Embedded C, see [3].

2.1. Arithmetic
Embedded C adds two new primitive types _Fract and _Accum, and one type

qualifier named _Sat. The underscores are included in these new keywords to ensure
compatibility with existing applications. Typically, an implementation provides the more
convenient macros fract, accum and sat in the include file <stdfix.h>.

2.1.1. The _Fract Type
The _Fract type offers fixed-point data types that have a value range of [-1.0,

+1.0> (-1.0 included but not +1.0). This is conveniently implemented using the two-
complement arithmetic typically used for integer arithmetic. In two-complement notation,
the dot of the fixed-point value is imagined right after the sign bit, before all value bits.
The first value bit represents 0.5, the second 0.25, etc. A fixed-point number has no
integer part.

The Embedded C language does not specify the exact accuracy of the fixed-point
types although a minimum accuracy is defined to which an implementation must comply.
The _Fract type can be qualified with the existing qualifiers short and long to

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 5

define three different fixed-point types. The range of these types is the same, [-1.0,
+1.0>, but the accuracy should be equal or get better when moving from short
_Fract to _Fract to long _Fract.

2.1.2. The _Accum Type
The _Accum is also a fixed-point type and can also be qualified with short and

long. The three resulting _Accum types must match the three _Fract types in terms
of accuracy, the number of bits in the fraction. Additionally, the _Accum types have an
integer part in their value. So, the range of an _Accum value may be [-256.0,
+256.0>. Again, the number of integer bits is not specified in the Embedded C
definition.

The accumulator type matches the accumulator registers of typical DSP processors.
The aim of these registers is to keep intermediate arithmetic results without having to
worry about overflow.

2.1.3. The _Sat Qualifier
The _Sat qualifier can be applied to fixed-point types. It makes that all operations

with operands of _Sat qualified type are saturated. It does not change the storage
representation. Saturation means that if overflow occurs in an operation, the result will be
set to the upper bound or lower bound of the type. For example, computing -0.75 +
-0.75 results in -1.0 under saturated fixed-point arithmetic.

Saturated arithmetic is important for signal processing applications because they
often operate close to the boundaries of the arithmetic domain in order to get the best
signal to noise ratio. This is unlike integer processing in C, which is usually considered
“large enough” and needs bound checks only at specific places.

2.1.4. The unsigned Qualifier
The unsigned qualifier (already existing in standard C) can also be applied to the

fixed-point types, providing arithmetic domains starting from 0.0. The range of the
_Fract type becomes [0.0, 1.0>.

Unsigned arithmetic is typically used in image processing applications, but it is not
universally present on all DSP processors.

2.1.5. Arithmetic Operations
The arithmetic operations for _Fract and _Accum include all those defined for the

int type, but exclude ~, &, | and ^.

2.1.6. Conversions
Within the fixed-point hierarchy, the usual implicit conversions are defined. For

example, the promotion of _Fract to unsigned _Fract or long _Fract is
automatic; unsigned _Fract can be promoted to _Accum, with similar promotions
for the long qualified variants.

Implicit conversions between fixed-point types and other types are fully defined. It is
possible to write mixed type expressions. Conversions in mixed expressions are based on
the rank order, which is int, _Fract, _Accum, float. Some extensions were made

The Embedded C Extension to C

6 Embedded Systems Conference 2004 Class #206

to the usual handling of mixed arithmetic, in particular to make an expression like 3 *
0.1r (where r denotes a fixed-point constant) meaningful. Under the usual arithmetic
rules, the value 3 has to be converted to a fixed-point value first which is out of range and
would lead to a meaningless result. With the extended rules, the intended outcome of
0.3r is obtained.

2.1.7. Fixed-Point Design Rationale
An alternative to the current choice in the fixed-point design is to allow the

programmer to specify exactly the number of relevant bits of the fixed-point types, or
even to allow the programmer to specify the number of bits for every fixed-point
variable. In this way, the implementation could guarantee the outcome of the
computations.

Such a design would raise the abstraction level of the Embedded C language and
increase the portability of code. However, it would also completely bypass the rationale
of Embedded C, which is to provide a good match between the language and the
performance increasing features of the processor. Enforcing an implementation of
Embedded C to implement, for example, a 40 bit _Accum type on a processor that offers
only 24 bit accumulators, is extremely awkward and would be highly inefficient. In that
case Embedded C would be unusable for its purpose, which is to provide the programmer
with access to the high performance features of the processor.

2.2. Multiple Address Spaces
Embedded C uses address space qualifiers to identify specific memory spaces in

variable declarations. There are no predefined keywords for this, as the actual memory
segmentation is left to the implementation. As an example, assume that X and Y are
memory qualifiers. The definition:

X int a[25] ;

means that a is an array of 25 integers which is located in the X memory. Similarly
(but less common):

X int * Y p ;

means that the pointer p is stored in the Y memory. This pointer points to integer
data that is located in the X memory.

If no memory qualifiers are used, the data is stored into unqualified memory.
For proper integration with the C language a memory structure is specified, where

the unqualified memory encompasses all other memories. All unqualified pointers are
pointers into this unqualified memory. The unqualified memory abstraction is needed to
keep the compatibility of the void * type, the NULL pointer and to avoid duplication of
all library code that accesses memory through pointers that are passed as parameters.

2.3. I/O Hardware Addressing
The motivation to include primitives for I/O hardware addressing in Embedded C is

to improve the portability of device driver code. In principle, a hardware device driver

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 7

should only be concerned with the device itself. The driver operates on the device
through device registers, which are device specific.

However, the method to access these registers can be very different on different
systems, even though it is the same device that is connected. The I/O hardware access
primitives aim to create a layer that abstracts the system specific access method from the
device that is accessed. The ultimate goal is to allow source code portability of device
drivers between different systems.

In the design of the I/O hardware addressing interface, three requirements needed to
be fulfilled:

• The device drive source code must be portable.
• The interface must not prevent implementations to produce machine code

that is as efficient as other methods.
• The design should permit encapsulation of the system dependent access

method.
The design is based on a small collection of functions that are specified in the

<iohw.h> include file. These interfaces are divided into two groups, one group
providing access to the device, the second group is for maintaining the access method
abstraction itself.

2.3.1. Accessing the Device
To access the device, the following functions are defined by Embedded C:

unsigned int iord(ioreg_designator);
void iowr(ioreg_designator, unsigned int value);
void ioor(ioreg_designator, unsigned int value);
void ioand(ioreg_designator, unsigned int value);
void ioxor(ioreg_designator, unsigned int value);

These interfaces provide read and write access to device registers, as well as typical
methods for setting and resetting individual bits. Variants of these functions are defined
(with buf appended to the names) to access arrays of registers. Variants are also defined
(with l appended) to operate with long values.

All of these interfaces take an I/O register designator ioreg_designator as one
of the arguments. These registers designators are an abstraction of the real registers
provided by the system implementation and hide the access method from the driver
source code.

2.3.2. Managing I/O Register Designators
Three functions are defined for managing the I/O register designators. Although

these are abstract entities for the device driver, the driver does have the obligation to
initialize and release the access methods. Note that these functions do not access, or
initialize, the device itself since that is the task of the driver. They allow, for example, the
operating system to provide a memory mapping of the device in the user address space.

The Embedded C Extension to C

8 Embedded Systems Conference 2004 Class #206

void iogroup_acquire(iogrp_designator);
void iogroup_release(iogrp_designator);
void iogroup_map(iogrp_designator, iogrp_designator);

The iogrp_designator specifies a logical group of I/O register designators; typically
this will be all the registers of one device. Like the I/O register designator, the I/O group
designator is an identifier or macro that is provided by the system implementation.

The map variant allows cloning of an access method when one device driver is to be
used to access multiple identical devices.

2.4. Portability of Embedded C
By design, a number of properties in Embedded C are left implementation defined.

This implies that the portability of Embedded C programs is not always guaranteed.
Embedded C provides access to the performance features of DSP processors. As not all
processors are equal, not all Embedded C implementations can be equal.

For example, suppose an application requires 24 bit fixed-point arithmetic and an
Embedded C implementation provides only 16 bits because that is the native size of the
processor. When the algorithm is expressed in Embedded C, it will not produce outputs of
the right precision. In such a case, there is a mismatch between the requirements of the
application and the capabilities of the processor. Under no circumstances, including the
use of assembly, will the algorithm run efficiently on such a processor. Embedded C can
not overcome such discrepancies.

Yet, Embedded C provides an great improvement in the portability and software
engineering of signal processing applications. Despite many differences between specific
DSP processors, there is a remarkable similarity in the special purpose features that they
provide to speed up signal processing applications.

The contribution of Embedded C is that it standardizes the notation to access these
features. By adding this to the C language, it is now feasible to write high-performance
code for embedded and DSP processors in a high level language. The responsibility of
the programmer to do the laborious resource planning tasks that assembly language
programming requires is taken away.

2.5. C++ Compatibility
C++ compatibility was another topic of debate in the design of Embedded C.

Preferably the extension should be expressed in such a way that it can be implemented as
C++ classes. It implies that the extension should not depend on the use of type qualifiers.
This, however, is against the “spirit of C” and leads to a long list of types that result when
all combinations of qualifiers are expanded. While this would be feasible for the fixed-
point types, it would still not provide a solution for the named address space qualifiers.

Hence the current design that follows standard C practice. In the case code must be
written that is to be accepted by both a C and C++ compiler, one needs to define macros
such as unsigned_long_accum, which should then expand into the right pattern for
the specific compiler. For named address spaces there is no similar solution yet because
these do not commonly appear in C++ compilers.

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 9

2.6. Features That Did Not Make It Into Embedded C
The current specification of Embedded C is not the final station. Embedded C is

defined to be a common playground for extensions to the C language required by typical
application and system areas. Although there were more proposals for extensions in
Embedded C, the committee decided to include only those that have shown a certain level
of maturity.

2.6.1. Circular Buffers
A Circular Buffer is a memory addressing feature that implements wraparound

access to arrays. Circular buffers are typically used to efficiently model sliding windows
over streamed input data. Instead of shifting the array for every new data element in the
window, the window simply wraps around at the end of the array. Hardware support for
this operation avoids control flow operations that are normally required to implement
such wraparound.

Although this feature was already present (successfully) in DSP-C, the committee
found that there were too many different implementations of circular buffer support in
DSP processors to be able to define a single unified specification in C that can map
efficiently to all current implementations.

2.6.2. Fixed-Point Complex Data Types
Complex data types are defined in the current ISO C standard (also known as C9X).

These are defined for floating point types. Although an extension to the fixed-point types
is logical, this was not incorporated in the current report yet.

2.6.3. Binary Coded Decimal Types
BCD types were briefly considered in the discussions on Embedded C. The area of

applications for these types is so diverse (also beyond embedded processing) that they
were dropped. The current report deals with binary types only.

2.6.4. Modulo Wrapping
An alternative method of handling overflow named _Modwrap was considered until

late in the design of Embedded C. It would provide an alternative qualifier for overflow
rounding next to _Sat, which should round fixed-point values modulo 1 in case of
overflow. It was dropped mainly because the committee did not want to clutter the type
system with another qualifier.

3. Example
Figure 2 shows an example of a FIR filter in Embedded C. It includes the fixed-point

and address space features of Embedded C.
The first line defines coeff, an array of _Fract values located in the X memory.

The first value of the (incomplete) initialization shows the notation of a _Fract value
constant, with the r appended. On line 5 there is an example of an _Accum constant
value, which has a k appended.

The Embedded C Extension to C

10 Embedded Systems Conference 2004 Class #206

 1 X _Fract coeff[N] = { 0.7r, ... } ;
 2
 3 _Fract fir(Y _Fract *inp) {
 4 int i ;
 5 _Accum sum = 0.0k ;
 6 for(i = 0 ; i < N ; i++) {
 7 sum += coeff[i] * (_Accum)*inp++ ;
 8 }
 9 return (_Sat _Fract)sum ;
10 }

Figure 2: Example FIR filter in Embedded C.

Line 3 gives the fir function type declaration. The function returns a _Fract. The
argument points to an array of input values of type _Fract that is located in Y memory.

Line 5 defines an accumulator variable. Lines 6 to 8 define a loop of N iterations.
The body of the loop is a single multiply-accumulate statement.

In line 7 there is an explicit conversion of the input value to the _Accum type. This
is to make sure that the processor's MAC unit can be used. Without the explicit
conversion, the rules of arithmetic in C specify that the intermediate result of the
multiplication must be a _Fract type; it does not allow the partial result to be kept with
a higher accuracy. However, the practice of a typical MAC unit implementation is that
the partial result is kept with a high precision. The explicit conversion makes the use of a
MAC possible.

Also important in line 7 is loading of the coefficient value and the input value from
two different memories, X and Y. This corresponds to the DSP processor's architecture
and allows for maximum bandwidth.

Line 9 makes an explicit saturating conversion from the _Accum type. It makes sure
that the returned value gets the maximum or minimum _Fract value in case of
overflow.

3.1. Alternative in C
To write a program in plain C that implements the semantics of the example is

certainly possible but would lead to an implementation that will not use the performance
improving features of the DSP target processor. Plain C has no awareness of multiple
memories. This notion cannot be expressed, hence the implementation will not use the
dual input pipeline of the DSP architecture. Similarly, fixed-point operations and
saturation need to be expressed in terms of shifts and conditional execution. Given the
number of different ways in which this can be done, it is almost impossible for the
compiler to find out how this is best translated to DSP specific features.

4. Implementation, Performance
Given the Embedded C version of the example, an optimizing compiler can compile

the loop into a single instruction running under zero-overhead loop control. This is as

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 11

good as an assembly version of the FIR filter can be. Besides knowledge of Embedded C,
the required compiler techniques are:

• Recognition of zero-overhead loops
• Memory disambiguation based on multiple memories
• Transforming array access to a walking pointer
• Recognition of the MAC pattern
• Scheduling post-increment with memory access

All of these capabilities are well within the reach of modern compilers.

4.1. Performance Results for Embedded C
To show the improvements that are possible due to the use of Embedded C, the

following tables show results of the commercial DSP-C implementation for the NEC
µPD77016 processor. This compiler was made with the ACE CoSy compiler
development system.

To make the comparison, four applications were selected that were originally
implemented in DSP-C. These applications were then re-implemented for comparison
using plain ISO C only. A single DSP-C capable compiler was used in all comparisons.
This is possible because a DSP-C compiler is also fully ISO C compliant.

Table 1 shows the improvements in code size when DSP-C is used. The first of the
four applications is a piece of control code. It was included in the test to show the
contrast between dealing with signal processing code and control code.

In control code there is typically little use for the DSP-C extensions. This is
confirmed in the code size that is reduced by only 6% in the DSP-C variant. In control
code there is usually no signal processing arithmetic done, but the multiple memory and
circular array primitives are sometimes applicable.

Code Size ISO C DSP-C Ratio
Control 442 414 1.1
SP1 350 90 3.9
SP2 2152 1155 1.9
SP3 3807 2781 1.4

Table 1: Code size comparison between four applications written
in both standard ISO C and DSP-C, both compiled with the same
compiler. The first application is a control code application, the

other three are signal processing applications. Measurements are
given in bytes.

For the three signal processing applications SP1, SP2 and SP3, the code savings are
substantial. Application SP1 is even reduced to a quarter of its original size, but note that
this was a small application to start with, containing only DSP specific code. For the
other two, with more administrative code in them, the savings are still substantial.

These results show that Embedded C is not only important to achieve high
performance, but additionally leads to significant code savings.

Table 2 shows the improvements in execution cycles for application run time. For
the control code, the improvement is minimal. The 6% code size improvement did not

The Embedded C Extension to C

12 Embedded Systems Conference 2004 Class #206

translate into a similar speed improvement, this is because the size improvements did not
occur in one of the performance critical loops of the control code application.

Clock Cycles ISO C DSP-C Ratio
Control 3946 3890 1.0
SP1 5144 550 9.4
SP2 168546 48064 3.5
SP3 2822 349 8.1

Table 2: Execution time comparisons between the ISO C and DSP-
C implementations of the four applications. The run time number

of clock cycles is reported.

The performance improvements for the signal processing applications are
remarkable. They demonstrate the tremendous effect that the specific features of DSP
processors can have when used to their full advantage. The key issue with DSP
processors is that everything must fit just right before the maximum benefit can be
obtained from the tightly designed processor data path. In the case of SP1, a 10 times
performance improvement is measured. As the performance improvements outweigh the
code size improvements, this shows that for the signal processing applications the actual
hot spots of the programs are attacked by DSP-C.

Based on these figures and more extensive comparisons it is impossible to claim that
DSP-C will always lead to a specific factor of performance improvement for signal
processing applications. This factor depends on how well the application fits the
processor architecture.

These figures are a proof of concept for Embedded C. They show that for real world
applications Embedded C enables the use of the high speed extensions that are found in
modern DSP processors. It is possibly to effectively program DSP processors in C!

5. History, Status and Future of Embedded C
Embedded C has its roots in DSP-C, which is an industry standard extension for C

with features for DSP processing. Implementations of DSP-C exist for the Philips REAL,
Adelante's Saturn DSP, NEC's µPD7701x family, TI's TMS320C54x, Analog Devices'
SHARC and Siroyan's OneDSP. Other DSP-C supporters or users are ARC International,
Atair software, DeSOC Technology, Japan Novel, Mentor Graphics, NullStone and
Toshiba. Mentor Graphics, in particular, implements the XRAY debugger that allows
source level debugging of DSP-C programs. Check the DSP-C web-site http://www.dsp-
c.org for up-to-date information.

ACE submitted DSP-C for standardization by the ISO working group on C. This
resulted in the ISO technical report on Embedded C [3]. Although Embedded C differs
slightly from DSP-C, it fully subscribes to its design rationale. It bridges the gap between
signal processing applications, plain C, and signal processing hardware.

It is expected that the current DSP-C implementations will also support Embedded C
in the future because of the strong similarities between the two.

The Embedded C Extension to C

Class #206 Embedded Systems Conference 2004 13

The first ballot on the draft Embedded C document was in 2002. Feedback from this
ballot was incorporated into the 2003 draft. The final report was ratified in February
2004.

The definition of the current report does not exclude further improvements. On the
contrary, the committee was relatively conservative in its choices in order to allow further
experience to be gained with alternative solutions in the field. This may lead to future
revision and extension of the report. Check out http://www.embedded-c.org to stay up to
date.

6. Conclusion
Embedded C is a relatively small extension to the C language, but its impact on the

programmability of embedded and DSP processors in particular is enormous. Specialized
high performance features are the reasons why DSP processors exists. Without the
Embedded C extension these features are inaccessible to the high level language
application programmer.

Today it is still common to program these processors in assembly language. The
industry cannot afford the increasing time to market that assembly programming of ever
more complicated applications incurs. Moreover the inherit dependency on a specific
processor and few highly specialized assembly programmers incurs great risk and
paralyzes future developments.

Embedded C offers a practical solution with proven results. It is being adopted by
more and more compiler developers. With the ratification of the ISO technical report, the
Embedded C approach is the standard solution for high level language programming of
the many billions of embedded processors out in the field.

References
[1] ACE. DSP-C, an extension to ISO/IEC IS 9899:1990. Technical Report CoSy-

8025P-dsp-c, ACE Associated Compiler Experts bv, Amsterdam, The Netherlands,
1998. Downloadable from http://www.dsp-c.org.

[2] EETIMES UK. IDC predicts strong mobile phone growth in 2004.
http://www.eetuk.com, 2003.

[3] JTC1/SC22/WG14. Extensions for the programming language C to support
embedded processors. Technical report, ISO/IEC, 2003. Downloadable from
http://www.dkuug.dk/JTC1/SC22/WG14.

